Latent factor model estimation typically relies on either using domain knowledge to manually pick several observed covariates as factor proxies, or purely conducting multivariate analysis such as principal component analysis. However, the former approach may suffer from the bias while the latter can not incorporate additional information. We propose to bridge these two approaches while allowing the number of factor proxies to diverge, and hence make the latent factor model estimation robust, flexible, and statistically more accurate. As a bonus, the number of factors is also allowed to grow. At the heart of our method is a penalized reduced rank regression to combine information. To further deal with heavy-tailed data, a computationally attractive penalized robust reduced rank regression method is proposed. We establish faster rates of convergence compared with the benchmark. Extensive simulations and real examples are used to illustrate the advantages.
translated by 谷歌翻译
强化学习(RL)是一种基于代理的方法,可以教机器人在物理世界中导航。已知收集RL的数据是一项费力的任务,现实世界实验可能会冒险。模拟器以更快,更具成本效益的方式促进培训数据的收集。但是,RL经常需要大量的仿真步骤才能使代理在简单任务上变得熟练。这是基于RL的视觉四面导航字段中普遍的问题,其中状态尺寸通常非常大,动态模型很复杂。此外,渲染图像和获得代理的物理特性在计算上可能很昂贵。为了解决这个问题,我们提出了一个基于Airsim的模拟框架,该框架提供了有效的并行训练。在此框架的基础上,APE-X经过修改,以结合空调环境的分散培训,以利用众多网络计算机。通过实验,我们能够使用上述框架将训练时间从3.9小时减少到11分钟,总共有74个代理和两台网络计算机。可以在https://sites.google.com/view/prl4airsim/home上找到有关我们项目Prl4airsim的更多详细信息和有关我们项目的视频。
translated by 谷歌翻译
本文回顾了AIM 2022上压缩图像和视频超级分辨率的挑战。这项挑战包括两条曲目。轨道1的目标是压缩图像的超分辨率,轨迹〜2靶向压缩视频的超分辨率。在轨道1中,我们使用流行的数据集DIV2K作为培训,验证和测试集。在轨道2中,我们提出了LDV 3.0数据集,其中包含365个视频,包括LDV 2.0数据集(335个视频)和30个其他视频。在这一挑战中,有12支球队和2支球队分别提交了赛道1和赛道2的最终结果。所提出的方法和解决方案衡量了压缩图像和视频上超分辨率的最先进。提出的LDV 3.0数据集可在https://github.com/renyang-home/ldv_dataset上找到。此挑战的首页是在https://github.com/renyang-home/aim22_compresssr。
translated by 谷歌翻译
尽管密集的视觉大满贯方法能够估计环境的密集重建,但它们的跟踪步骤缺乏稳健性,尤其是当优化初始化较差时。稀疏的视觉大满贯系统通过将惯性测量包括在紧密耦合的融合中,达到了高度的准确性和鲁棒性。受这一表演的启发,我们提出了第一个紧密耦合的密集RGB-D惯性大满贯系统。我们的系统在GPU上运行时具有实时功能。它共同优化了相机姿势,速度,IMU偏见和重力方向,同时建立了全球一致,完全密集的基于表面的3D重建环境。通过一系列关于合成和现实世界数据集的实验,我们表明我们密集的视觉惯性大满贯系统对于低纹理和低几何变化的快速运动和时期比仅相关的RGB-D仅相关的SLAM系统更强大。
translated by 谷歌翻译
在本文中,我们主要关注如何通过借口任务(例如旋转或颜色置换等)学习其他特征表示形式的其他特征表示形式。借口任务产生的这种附加知识可以进一步提高几次学习(FSL)的性能,因为它与人类通知的监督(即FSL任务的类标签)有所不同。为了解决此问题,我们提出了插入式层次树结构感知(HTS)方法,该方法不仅了解FSL和借口任务的关系,而且更重要的是,可以自适应地选择和汇总由借口任务生成的特征表示,以最大化FSL任务的性能。引入了层次树构造组件和封闭式选择汇总组件来构建树结构并找到更丰富的可转移知识,这些知识可以迅速适应具有一些标记的图像的新颖类。广泛的实验表明,我们的HTS可以显着增强多种几次方法,以在四个基准数据集上实现新的最新性能。该代码可在以下网址获得:https://github.com/remimz/hts-eccv22。
translated by 谷歌翻译
神经体系结构搜索方法寻求具有有效的体重共享超级网训练的最佳候选者。但是,最近的研究表明,关于独立架构和共享重量网络之间的性能的排名一致性差。在本文中,我们提出了提前引导的一声NAS(PGONA),以加强超级网的排名相关性。具体而言,我们首先探讨激活功能的效果,并提出基于三明治规则的平衡采样策略,以减轻超级网中的重量耦合。然后,采用了拖鞋和禅宗得分来指导超级网的训练,并具有排名相关性损失。我们的PGONA在CVPR2022第二轻型NAS挑战赛的SuperNet轨道中排名第三。代码可在https://github.com/pprp/cvpr2022-nas?competition-track1-3th-solution中找到。
translated by 谷歌翻译
学习以上对象的场景表示对于实现复杂场景的结构理解和抽象至关重要。然而,由于目前为无监督的对象表示学习的方法建立在静止观察者假设或静态场景假设之上,它们通常是:i)遭受单视图空间歧义,或ii)从动态场景中不正确或不准确的对象表示。为了解决此问题,我们提出了动态感知的多目标网络(DYMON),这是一种扩展多视图以对象的表示学习学习到动态场景的方法的方法。我们在多视图 - 动态场景数据上训练Dymon,并显示Dymon学习 - 没有监督 - 从一系列观察序列来构建观察者动作和场景对象动态的纠缠效果,并构建适合渲染的场景对象空间表示在任意次(跨时间查询)和任意视点(查询空间)。我们还显示分解场景表示(W.R.T.对象)支持通过独立和时间通过空间和时间查询单个对象。
translated by 谷歌翻译
在过去的十年中,自动驾驶航空运输车辆引起了重大兴趣。这是通过空中操纵器和新颖的握手的技术进步来实现这一目标的。此外,改进的控制方案和车辆动力学能够更好地对有效载荷进行建模和改进的感知算法,以检测无人机(UAV)环境中的关键特征。在这项调查中,对自动空中递送车辆的技术进步和开放研究问题进行了系统的审查。首先,详细讨论了各种类型的操纵器和握手,以及动态建模和控制方法。然后,讨论了降落在静态和动态平台上的。随后,诸如天气状况,州估计和避免碰撞之类的风险以确保安全过境。最后,调查了交付的UAV路由,该路由将主题分为两个领域:无人机操作和无人机合作操作。
translated by 谷歌翻译
少量学习,特别是几秒钟的图像分类,近年来受到了越来越多的关注,并目睹了重大进展。最近的一些研究暗示表明,许多通用技术或“诀窍”,如数据增强,预训练,知识蒸馏和自我监督,可能大大提高了几次学习方法的性能。此外,不同的作品可以采用不同的软件平台,不同的训练计划,不同的骨干架构以及甚至不同的输入图像大小,使得公平的比较困难,从业者与再现性斗争。为了解决这些情况,通过在Pytorch中的同一单个代码库中重新实施17个最新的框架,提出了几次射门学习(Libfewshot)的全面图书馆。此外,基于libfewshot,我们提供多个基准数据集的全面评估,其中包含多个骨干架构,以评估不同培训技巧的常见缺陷和效果。此外,鉴于近期对必要性或未培训机制的必要性怀疑,我们的评估结果表明,特别是当与预训练相结合时,仍然需要这种机制。我们希望我们的工作不仅可以降低初学者的障碍,可以在几次学习上工作,而且还消除了非动力技巧的影响,促进了几枪学习的内在研究。源代码可从https://github.com/rl-vig/libfewshot获取。
translated by 谷歌翻译
Video semantic segmentation (VSS) is beneficial for dealing with dynamic scenes due to the continuous property of the real-world environment. On the one hand, some methods alleviate the predicted inconsistent problem between continuous frames. On the other hand, other methods employ the previous frame as the prior information to assist in segmenting the current frame. Although the previous methods achieve superior performances on the independent and identically distributed (i.i.d) data, they can not generalize well on other unseen domains. Thus, we explore a new task, the video generalizable semantic segmentation (VGSS) task that considers both continuous frames and domain generalization. In this paper, we propose a class-wise non-salient region generalized (CNSG) framework for the VGSS task. Concretely, we first define the class-wise non-salient feature, which describes features of the class-wise non-salient region that carry more generalizable information. Then, we propose a class-wise non-salient feature reasoning strategy to select and enhance the most generalized channels adaptively. Finally, we propose an inter-frame non-salient centroid alignment loss to alleviate the predicted inconsistent problem in the VGSS task. We also extend our video-based framework to the image-based generalizable semantic segmentation (IGSS) task. Experiments demonstrate that our CNSG framework yields significant improvement in the VGSS and IGSS tasks.
translated by 谷歌翻译